December 5-6, 2018

Norris Conference Centers -City Centre, Houston, Texas ShaleTechConference.com

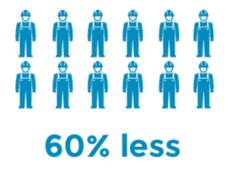
Turbine Powered Electric Hydraulic Fracturing

Matt Vahsholtz, P.E. Engineering Manager, Fracturing Services Evolution Well Services

Hydraulic Fracturing Challenges

- Safety
 - # of Personnel
 - Exposure
 - Noise
 - Hot Fueling

- Economics
 - Capital
 - R&M
 - Fuel


- Environment
 - EPA Tier IV
 - Footprint
 - Lighting

- Efficiency
 - MORU
 - Pumping
 - Technology

Safety – Personnel

Turbine Powered Electric Fleet

Turbine powered electric fracturing operations reduce required personnel utilizing electric equipment and enhanced automation

Conventional Fleet

ĥ	ĥ	ĥ	· M · M · M · M · M · M · M · M · M · M	ĥ
ĥ	ĥ	Ŵ	Ŵ	ĥ
ĥ	ĥ	Ŵ	Ŵ	ĥ
ĥ	ĥ	Ŵ	Ŵ	ĥ


The average conventional fraturing operation is crewed by 20+ personnel.

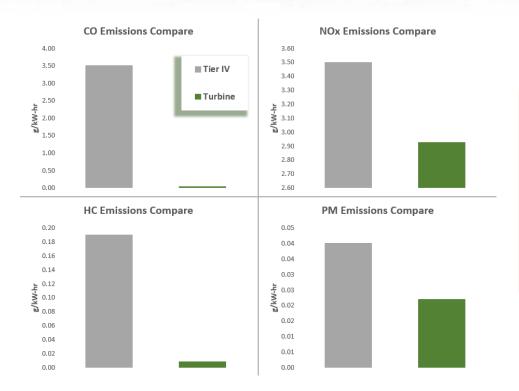
Safety – Exposure

- All Equipment is Controlled from Inside a Tri-Level Data Van
 - Less personnel exposure around high pressure iron and silica dust
 - Camera footage on all moving parts
 - Birds eye view for operators on top level

Safety – Noise

- Noise Reduction
 - Eliminates the need for hearing protection
 - Significantly eases disruption to neighboring areas

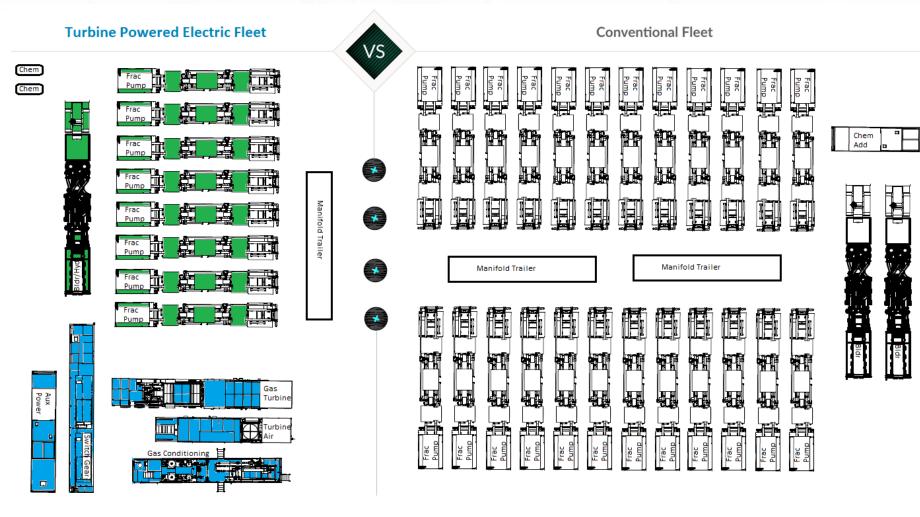
Safety – Hot Fueling



No Hot Fueling Required

Cause of multiple location fires during fracturing operations

Environment – EPA Tier IV



- The Turbine Emissions Exceed EPA Tier IV Standards
 - Visual evidence on silos from electric crew vs. diesel crew

Environment – Footprint

56,000 HHP vs 48,000 HHP

SHALETECH

Hydration

Environment – Lighting

Direct Focused LED Lighting

- Does not flood light into the surrounding areas
- Allows safe, quiet operations, 24-hrs a day

Economics – Capital

Less Capital Required than Building a Conventional Fleet

- Dollar per HHP basis
- All in cost including power generation equipment
- Applies to larger fleets for shale operations
- Breaks the Myth of Electric Fleets Being Expensive
 - Competitively priced in any shale-type market

Economics – R&M

- Less R&M Required than a Conventional Fleet
 - No diesel engines, transmissions, radiators, or tractors (3rd party moving)
 - Very little added R&M due to electrical and turbine equipment
 - 25,000 operating hours for the turbine's first hot section PM
- 100,000+ Data Points Tracked Continuously
 - Ability to predict and learn fosters predictive maintenance

Economics – Fuel

Injection Rate (BPM)	90
Treating Pressure (PSI)	9500
Per Stage Pump Time (HRS)	2
Time Between Stages (HRS)	2.38
Frac Stages Per Well	37
Wells Per Pad	4
Pads Per Year	12
Diesel Cost (GAL)	2.75
Field Gas Cost (MCF)	1.85
BTU/SCF of Field Gas	1200

Turbine Power	Conventional Fleet	
Consumption Per Stage	350 NAT GAS (MCF)	VS 2,935 DIESEL (GAL)
Cost Per Stage	\$648 (USD)	\$8,071 (USD)
Consumption Per Well	12,959 NAT GAS (MCF)	108,592 DIESEL (GAL)
Cost Per Well	\$23,975 (USD)	\$298,627 (USD)
Consumption Per Pad	51,838 NAT GAS (MCF)	434,367 DIESEL (GAL)
Cost Per Pad	\$95,900 (USD)	\$1,194,508 (USD)
Consumption Per Year	622,052 NAT GAS (MCF)	5,212,399 DIESEL (GAL)
Cost Per Year	\$1,150,796 (USD)	\$14,334,098 (USD)

Burn Rate Under Load of 150-200 mcf/hr
Idle burn rate of ~40 mcf/hr

Efficiency – MORU

- High Power Density 56,000 HHP in 8 Pump Trailers
 - Far less pumps trailers and iron on the ground
- Medium Voltage Platform
 - Higher voltage means less power cables, ~15 main cables
- Build for Purpose Turbine Package
 - No crane lifts or need to decouple the turbine from the generator
 - Two trailers operational and transportable

Efficiency – Pumping

- High Power Density 56,000 HHP in 8 Pump Trailers
 - Excess reserve HHP allows for long term, high efficiency pumping
 - 7,000 HHP per pump trailer, compared to 2,200 HHP
- Blending Equipment
 - 2 blenders and 1 hydration unit combined into 1 trailer
 - 100% redundant blending with ambidextrous suction and discharge
- Very Low Rate Applications
 - Electric motors and VFDs allow for optimum control
 - Pumping capabilities of less than 1 bpm
 - Conventional pumps have transmission limitations

Efficiency – Technology

- Advanced Automation Ensures Steady Job Execution
 - Compensates for changes in any piece of equipment
 - Pump-by-pressure capability
- IOT-Enabled Equipment
 - Unique ID of all end devices, centralized database
- Remote Monitoring
 - Remote visibility of process parameters and all end devices
 - All instrumentation is cloud-connected
 - CCTV, fiber-optic communications

Conclusions

- Turbine powered, electric hydraulic fracturing is fundamentally different and inherently eliminates most of the challenges currently faced in hydraulic fracturing
 - Safety, environment, economics, & efficiencies are all greatly improved when utilizing electric hydraulic fracturing
- Efficient turbine power is both economical and an effective way to power electric frac fleets
 - A single 36 MW turbine can generate enough electricity to power 30,000 HHP in nearly any conditions
- Turbine powered, electric hydraulic fracturing opens the door for a new generation of technological advances within the hydraulic fracturing market

Thank You For Your Time

Questions?

