December 5-6, 2018

Norris Conference Centers -City Centre, Houston, Texas ShaleTechConference.com

Stacked Pay Development in the Delaware Basin

Raj Malpani Production Engineering Lead Schlumberger

Outline

- Delaware Basin Introduction & Trends
- Reservoir Characterization
- Well Stacking & Interference
- Completion Sequencing
- Well Staggering
- Conclusions

Permian Basin: Delaware Basin

Delaware Basin: Study Area

Permian Basin of West Texas and New Mexico during late Permian

SHALETECH

Reservoir Characterization

Reservoir Characterization

Zone Name	Avg. Porosity	Phi*H	Avg. Perm	K*H	Avg. Sw	HCPV
	fraction	ft	md	md-ft	fraction	ft
3rd Bone Spring	0.043	6.28	0.0041	0.597	0.58	2.65
Wolfcamp A	0.052	15.94	0.0036	1.116	0.45	8.73
Wolfcamp B	0.065	18.26	0.0075	2.119	0.64	6.51
Wolfcamp C_Upper	0.054	18.34	0.0068	2.278	0.83	3.11
Wolfcamp C_Lower	0.057	22.45	0.0374	14.810	0.84	3.52

Wolfcamp A has the highest hydrocarbon pore volume

Well Stacking

SPE 187496

Well Stacking

Completion Design

Completion Parameters	3 rd Bone Spring	All Wolfcamp	
Cluster Spacing, feet	33	25	
Number of Clusters per Stage	6	8	
Proppant/Lateral Foot (lbs/foot)	1,800	2,250	
Fluid/Lateral Foot (bbls/foot)	35	63	
Pump Rate (bbls/min)	80	90	
Proppant Types	100 Mesh, 40/70, 30/50	100 Mesh, 40/70	
Fluid Types	Slick water, 10# & 15# Linear Gel	Slick water	
Maximum Proppant Concentration (PPA)	3	2	

Single Well

Completing & Producing Each Zone Individually

Vertical Interference (Direct Stack)

3rd BS ■ Wolfcamp A ■ Wolfcamp B ■ Wolfcamp C

Vertical Completion Sequencing

Well Staggering 330ft

All Wells Producing Individually Top-Bottom Bottom-Top

SHALETECH

Well Staggering 660ft

All Wells Producing Individually Top-Bottom Bottom-Top

SHALETECH

URTeC 2875581

Staggering Summary

4D Planning/Scheduling/Sequencing

Conclusions

- Six potential landing targets were identified in four zones
- Wolfcamp C showed high water saturation
- Wolfcamp A exhibited the best potential
- Completing wells bottom to top produced more oil
- Optimum staggering spacing is between 330 ft and 660 ft
- Incorporating reservoir state in planning is key
- Economic analysis is needed for optimum winerack configuration

Stacked Pay Development in the Delaware Basin

